This information is provided free of charge by the Department of Industrial Relations from its web site at www.dir.ca.gov. These regulations are for the convenience of the user and no representation or warranty is made that the information is current or accurate. See full disclaimer at https://www.dir.ca.gov/od_pub/disclaimer.html. Subchapter 7. General Industry Safety Orders Group 16. Control of Hazardous Substances Article 109. Hazardous Substances and Processes Return to index New query ## §5192. Hazardous Waste Operations and Emergency Response, Appendix C ## Appendices to 5192 Hazardous Waste Operations and Emergency Response NOTE: The following appendices serve as non-mandatory guidelines to assist employees and employers in complying with the appropriate requirements of this section. However, subsection 5192(g) makes mandatory in certain circumstances the use of Level A and Level B PPE protection. Compliance Guidelines (Non-Mandatory) 1. Occupational Safety and Health Program: Each hazardous waste site clean-up effort will require an occupational safety and health program headed by the site coordinator or the employer's representative. The purpose of the program will be the protection of employees at the site and will be an extension of the employer's overall safety and health program. The program will need to be developed before work begins on the site and implemented as work proceeds as stated in subsection (b). The program is to facilitate coordination and communication of safety and health issues among personnel responsible for the various activities which will take place at the site. The program will provide the means for identifying and controlling worksite hazards and the means for monitoring program effectiveness. It will provide the overall means for planning and implementing the needed safety and health training and job orientation of employees, who will be working at the site. The program will need to cover the responsibilities and authority of the site coordinator or the employer's manager on the site for the safety and health of employees at the site, and the relationships with contractors or support services as to what each employer's safety and health responsibilities are for their employees on the site. Each contractor on the site needs to have its own safety and health program so structured that it will smoothly interface with the program of the site coordinator or principal contractor. Also those employers involved with treating, storing or disposal of hazardous waste as covered in subsection (p) must have implemented a safety and health program for their employees. This program is to include the hazard communication program required in subsection (p)(1) and the training required in subsections (p)(7) and (p)(8) as parts of the employer's comprehensive overall safety and health program. This program is to be in writing. Each site or workplace safety and health program will need to include the following: (1) Policy statements of the line of authority and accountability for implementing the program, the objectives of the program, and the role of the site safety and health supervisor or manager and staff; (2) means or methods for the development of procedures for identifying and controlling workplace hazards at the site; (3) means or methods for the development and communication to employees of the various plans, work rules, standard operating procedures and practices that pertain to individual employees and supervisors; (4) means for the training of supervisors and employees to develop the needed skills and knowledge to perform their work in a safe and healthful manner; (5) means to anticipate and prepare for emergency situations; and (6) means for obtaining information feedback to aid in evaluating the program and for improving the effectiveness of the program. The management and employees should be trying continually to improve the effectiveness of the program thereby enhancing the protection being afforded those working on the site. Accidents on the site should be investigated to provide information on how such occurrences can be avoided in the future. When injuries or illnesses occur on the site or workplace, they will need to be investigated to determine what needs to be done to prevent this incident from occurring again. Such information will need to be used as feedback on the effectiveness of the program and the information turned into positive steps to prevent any reoccurrence. Receipt of employee suggestions or complaints relating to safety and health issues involved with site or workplace activities is also a feedback mechanism that can be used effectively to improve the program and may serve in part as an evaluative tool(s). For the development and implementation of the program to be the most effective, professional safety and health personnel should be used. Personnel such as, but not necessarily limited to Certified Safety Professionals, Board Certified Industrial Hygienists, or Registered Professional Safety Engineers are good examples of professional stature for safety and health managers who will administer the employer's program. 2. Training: The training programs for employees subject to the requirements of subsection (e) of this standard should address: The safety and health hazards employees should expect to find on hazardous waste clean-up sites; what control measures or techniques are effective for those hazards; what monitoring procedures are effective in characterizing exposure levels; what makes an effective employer's safety and health program; what a site safety and health plan should include; hands on training with personal protective equipment and clothing they may be expected to use; the contents of the OSHA standard relevant to the employee's duties and function; and employee's responsibilities under OSHA and other regulations. Supervisors will need training in their responsibilities under the safety and health program and its subject areas such as the spill containment program, the personal protective equipment program, the medical surveillance program, the emergency response plan, and other areas. The training programs for employees subject to the requirements of subsection (p) of this standard should address: The employer's safety and health program elements impacting employees; the hazard communication program; the medical surveillance program; the hazards and the controls for such hazards that employees need to know for their job duties and functions. All require annual refresher training. The training programs for employees covered by the requirements of subsection (q) of this standard should address those competencies required for the various levels of response such as: The hazards associated with hazardous substances; hazard identification and awareness; notification of appropriate persons; the need for and use of personal protective equipment including respirators; the decontamination procedures to be used; preplanning activities for hazardous substance incidents including the emergency response plan; company standard operating procedures for hazardous substance emergency responses; the use of incident command system; and other subjects. Hands-on training should be stressed whenever possible. Critiques done after an incident which include an evaluation of what worked and what did not, and how could the incident be better handled the next time may be counted as training time. For hazardous materials specialists (usually members of hazardous materials teams), the training should address the care, use, and/or testing of chemical protective clothing including totally encapsulating suits; the medical surveillance program; the standard operating procedures for the hazardous materials team including the use of plugging and patching equipment; and other subject areas. Officers and leaders who may be expected to be in charge at an incident should be fully knowledgeable of their company's incident command system. They should know where and how to obtain additional assistance and be familiar with the local district's emergency response plan and the state emergency response plan. Specialist employees such as technical experts, medical experts, or environmental experts that work with hazardous materials in their regular jobs, who may be sent to the incident scene by the shipper, manufacturer, or governmental agency to advise and assist the person in charge of the incident should have training on an annual basis. Their training should include the care and use of personal protective equipment (PPE) including respirators; knowledge of the incident command system and how they are to relate to it; and those areas needed to keep them current in their respective field as it relates to safety and health involving specific hazardous substances. Those skilled support personnel, such as employees who work for public works departments or equipment operators who operate bulldozers, sand trucks, backhoes, etc., who may be called to the incident scene to provide emergency support assistance, should have at least a safety and health briefing before entering the area of potential or actual exposure. These skilled support personnel, who have not been a part of the emergency response plan and do not meet the training requirements, should be made aware of the hazards they face and should be provided all necessary protective clothing and equipment required for their tasks. There are two National Fire Protection Association standards, NFPA 472--Standard for Professional Competence of Responders to Hazardous Material Incidents and NFPA 471--Recommended Practice for Responding to Hazardous Material Incidents, which are excellent resource documents to aid fire departments and other emergency response organizations in developing their training program materials. NFPA 472 provides guidance on the skills and knowledge needed for first responder awareness level, first responder operations level, HAZMAT technicians, and HAZMAT specialists. It also offers guidance for the officer corps who will be in charge of hazardous substance incidents. - 3. Decontamination: Decontamination procedures should be tailored to the specific hazards of the site and may vary in complexity and number of steps, depending on the level of hazard and the employee's exposure to the hazard. Decontamination procedures and PPE decontamination methods will vary depending upon the specific substance, since one procedure or method may not work for all substances. Evaluation of decontamination methods and procedures should be performed, as necessary, to assure that employees are not exposed to hazards by reusing PPE. References in Appendix D may be used for guidance in establishing an effective decontamination program. In addition, the U.S. Coast Guard's Manual, Policy Guidance for Response to Hazardous Chemical Releases, U.S. Department of Transportation, Washington, DC (COMDTINST M16465.30) is a good reference for establishing an effective decontamination program. - 4. Emergency response plans: The state, along with designated districts within the state, will be developing or have developed local emergency response plans. These state and district plans should be utilized in the emergency response plans called for in this standard. Each employer should assure that its emergency response plan is compatible with the local plan. The major reference being used to aid in developing the state and local district plans is the Hazardous Materials Emergency Planning Guide, NRT-1. The current Emergency Response Guidebook from the U.S. Department of Transportation, CMA's CHEMTREC, and the Fire Service Emergency Management Handbook may also be used as resources. Employers involved with treatment, storage, and disposal facilities for hazardous waste, which have the required contingency plan called for by their permit, would not need to duplicate the same planning elements. Those items of the emergency response plan that are properly addressed in the contingency plan may be substituted into the emergency response plan required in 8 CCR 5192 or otherwise kept together for employer and employee use. 5. Personal protective equipment programs: The purpose of personal protective clothing and equipment (PPE) is to shield or isolate individuals from the chemical, physical, and biologic hazards that may be encountered at a hazardous substance site. As discussed in Appendix B, no single combination of protective equipment and clothing is capable of protecting against all hazards. Thus PPE should be used in conjunction with other protective methods and its effectiveness evaluated periodically. The use of PPE can itself create significant worker hazards, such as heat stress, physical and psychological stress, and impaired vision, mobility, and communication. For any given situation, equipment and clothing should be selected that provide an adequate level of protection. However, over-protection, as well as under- protection, can be hazardous and should be avoided where possible. Two basic objectives of any PPE program should be to protect the wearer from safety and health hazards, and to prevent injury to the wearer from incorrect use and/or malfunction of the PPE. To accomplish these goals, a comprehensive PPE program should include hazard identification; medical monitoring; environmental surveillance; selection, use, maintenance, and decontamination of PPE; and its associated training. The written PPE program should include policy statements, procedures, and guidelines. Copies should be made available to all employees, and a reference copy should be made available at the worksite. Technical data on equipment, maintenance manuals, relevant regulations, and other essential information should also be collected and maintained. 6. Incident command system (ICS): Subsection 5192(q)(3)(B) requires the implementation of an ICS. The ICS is an organized approach to effectively control and manage operations at an emergency incident. The individual in charge of the ICS is the senior official responding to the incident. The ICS was originated by the California fire service. During large complex fires involving several companies and many pieces of apparatus, a command post would be established. This enabled one individual to be in charge of managing the incident, rather than having several officers from different companies making separate, and sometimes conflicting, decisions. The individual in charge of the command post would delegate responsibility for performing various tasks to subordinate officers. Additionally, all communications were routed through the command post to reduce the number of radio transmissions and eliminate confusion. However, strategy, tactics, and all decisions were made by one individual. The ICS is also implemented for emergency response to all incidents, both large and small, that involve hazardous substances. For a small incident, the individual in charge of the ICS may perform many tasks of the ICS. There may not be any, or little, delegation of tasks to subordinates. For example, in response to a small incident, the individual in charge of the ICS, in addition to normal command activities, may become the safety officer. To illustrate the operation of the ICS, the following scenario might develop during a small incident, such as an overturned tank truck with a small leak of flammable liquid. The first responding senior officer would implement and take command of the ICS. That person would size-up the incident and determine if additional personnel and apparatus were necessary; would determine what actions to take to control the leak; and determine the proper level of personal protective equipment. If additional assistance is not needed, the individual in charge of the ICS would implement actions to stop and control the leak using the fewest number of personnel that can effectively accomplish the tasks. The individual in charge of the ICS then would designate himself as the safety officer and two other employees as a back-up in case rescue may become necessary. In this scenario, decontamination procedures may not be necessary. A large complex incident may require many employees and difficult, time-consuming efforts to control. In these situations, the individual in charge of the ICS will want to delegate different tasks to subordinates in order to maintain a span of control that will keep the number of subordinates that are reporting, to a manageable level. Delegation of tasks at large incidents may be by location, where the incident scene is divided into sectors, and subordinate officers coordinate activities within the sector that they have been assigned. Delegation of tasks can also be by function. Five major functional areas (Incident Command, Operations, Planning, Logistic, and Finance) are activated at major incidents addressing such issues as: medical services; evacuation; water supply; resources (equipment, apparatus); media relations; safety; and site control (integrate activities with police for crowd and traffic control). Also for a large incident, the individual in charge of the ICS will designate several employees as back-up personnel; and a number of safety officers to monitor conditions and recommend safety precautions. Therefore, no matter what size or complexity an incident may be, by implementing an ICS there will be one individual in charge who makes the decisions and gives directions; and, all actions, and communications are coordinated through one central point of command. Such a system should reduce confusion, improve safety, organize and coordinate actions, and should facilitate effective management of the incident. The details of the ICS as well as several different scenarios are incorporated into the California Hazardous Material Incident Contingency Plan (HMICP) developed by the State's Office of Emergency Services (OES). The HMICP is written primarily for agencies of the State of California to guide them in understanding the state's role in hazardous material emergencies. Secondarily, the HMICP is anticipated to be utilized by local and federal governments, and private organizations to clarify their roles and relationships concerning hazardous material emergencies. This plan should be used for pre-incident planning; or during a hazardous material emergency for guidance and clarification where a state agency has responsibility (i.e., State Agency Coordination) or jurisdiction (i.e., on the right of way of a state highway), or the incident exceeds local resources beyond those of the SARA Title III Regional Plan. 7. Site Safety and Control Plans: The safety and security of response personnel and others in the area of an emergency response incident site should be of primary concern to the incident commander. The use of a site safety and control plan could greatly assist those in charge of assuring the safety and health of employees on the site. A comprehensive site safety and control plan should include the following: Summary analysis of hazards on the site and a risk analysis of those hazards; site map or sketch; site work zones (clean zone, transition or decontamination zone, work or hot zone); use of the buddy system; site communications; command post or command center; standard operating procedures and safe work practices; medical assistance and triage area; hazard monitoring plan (air contaminant monitoring, etc.); decontamination procedures and area; and other relevant areas. This plan should be a part of the employer's emergency response plan or an extension of it to the specific site. 8. Medical surveillance program: Workers handling hazardous substances may be exposed to toxic chemicals, safety hazards, biologic hazards, and radiation. Therefore, a medical surveillance program is essential to assess and monitor worker's health and fitness for employment in hazardous waste operations and during the course of work; to provide emergency and other treatment as needed; and to keep accurate records for future reference. The Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities developed by the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (Federal OSHA), the U.S. Coast Guard (USCG), and the Environmental Protection Agency (EPA), October 1985, provides an excellent example of the types of medical testing that should be done as part of a medical surveillance program. 9. New Technology and Spill Containment Programs: Where hazardous substances may be released by spilling from a container that will expose employees to the hazards of the material, the employer will need to implement a program to contain and control the spilled material. Diking and ditching, as well as use of absorbents like diatomaceous earth, are traditional techniques which have proven to be effective over the years. However, in recent years new products have come into the marketplace, the use of which complement and increase the effectiveness of these traditional methods. These new products also provide emergency responders and other with additional tools or agents to use to reduce the hazards of spilled materials. These agents can be rapidly applied over a large area and can be uniformly applied or otherwise can be used to build a small dam, thus improving the workers' ability to control spilled material. These application techniques enhance the intimate contact between the agent and the spilled material allowing for the quickest effect by the agent or quickest control of the spilled material. Agents are available to solidify liquid spilled materials, to suppress vapor generation from spilled materials, and to do both. Some special agents, which when applied as recommended by the manufacturer, will react in a controlled manner with the spilled material to neutralize acids or caustics, or greatly reduce the level of hazard of the spilled material. There are several modern methods and devices for use by emergency response personnel or others involved with spill control efforts to safely apply spill control agents to control spilled material hazards. These include portable pressurized applicators similar to hand-held portable fire extinguishing devices, and nozzle and hose systems similar to portable fire fighting foam systems which allow the operator to apply the agent without having to come into contact with the spilled material. The operator is able to apply the agent to the spilled material from a remote position. The solidification of liquids provides for rapid containment and isolation of hazardous substance spills. By directing the agent at run-off points or at the edges of the spill, the reactant solid will automatically create a barrier to slow or stop the spread of the material. Clean-up of hazardous substances is greatly improved when solidifying agents, acid or caustic neutralizers, or activated carbon adsorbents are used. Properly applied, these agents can totally solidify liquid hazardous substances or neutralize or absorb them, which results in materials which are less hazardous and easier to handle, transport, and dispose of. The concept of spill treatment, to create less hazardous substances, will improve the safety and level of protection of employees working at spill clean-up operations or emergency response operations to spills of hazardous substances. The use of vapor suppression agents for volatile hazardous substances, such as flammable liquids and those substances which present an inhalation hazard, is important for protecting workers. The rapid and uniform distribution of the agent over the surface of the spilled material can provide quick vapor knockdown. There are temporary and long-term foam-type agents which are effective on vapors and dusts, and activated carbon adsorption agents which are effective for vapor control and soaking-up of the liquid. The proper use of hose lines or hand-held portable pressurized applicators provides good mobility and permits the worker to deliver the agent from a safe distance without having to step into the untreated spilled material. Some of these systems can be recharged in the field to provide coverage of larger spill areas than the design limits of a single charged applicator unit. Some of the more effective agents can solidify the liquid flammable hazardous substances and at the same time elevate the flashpoint above 14°F so the resulting substance may be handled as a nonhazardous waste material if it meets the U.S. Environmental Protection Agency's 40 CFR Part 261 requirements (See particularly § 261.21). All workers performing hazardous substance spill control work are expected to wear the proper protective clothing and equipment for the materials present and to follow the employer's established standard operating procedures for spill control. All involved workers need to be trained in the established operating procedures; in the use and care of spill control equipment; and in the associated hazards and control of such hazards of spill containment work. These new tools and agents are the things that employers will want to evaluate as part of their new technology program. The treatment of spills of hazardous substances or wastes at an emergency incident as part of the immediate spill containment and control efforts is sometimes acceptable to EPA and a permit exception is described in 40 CFR § 264.1(g)(8) and 265.1(c)(11). Go Back to Article 109 Table of Contents